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Critical limit cycles of the retarded Josephson equation 
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Received 12 January 1978 

Abstract. The retarded Josephson equation, an integro-differential equation, will be 
solved for an exponential kernel including a trigonometric function (Dirichlet kernel). The 
characteristic and the limit cycles will be discussed. Especially, the critical limit cycle for a 
simple exponential kernel has been investigated. 

1. Introduction 

The full dynamics of a Josephson junction is given by the Werthamer equation 
(Werthamer 1966), which is an integro-differential equation. The retarded Josephson 
equation (Schlup 1975) can be considered as a mathematical simplification, which is at 
least as good as any differential approach to Werthamer's equation, i.e. its adiabatic 
approximation or linearised versions thereof. 

For a point junction with current input, the retarded Josephson equation in 
dimensionless units is 

/3& + 4 + p dt' F(t ' )  sin d ( t  - t') = a, (1.1) 

where 

/3 = hCjm/2eGk, a = I / j m ,  dtF( t )=  1 

and C = capacitance, GN = normal conductance, jm = maximal pair current and I the 
input current. The instantaneous voltage is V = jmh&/2eGN and the unilateral 
Fourier transforms define the tunnel functions 

j ( w ) +  ii(w) = dt F( t )  e'"'. (1.2) r 
Compared to Werthamer's equation, (1 . l )  assumes a linear quasi-particle term and 
contains the completely retarded pair term. 

It is well known that the kernel F ( t )  being an oscillatory (frequency os) weakly 
(- l / t )  decreasing function is the reason that direct methods like Runge-Kutta 
combined with Gauss integration give only very crude results. On the other hand, the 
current-voltage characteristic for a rotational steady state can be evaluated by Fourier 
methods for not too small average voltages ( V )  with w = (4) 2 w , / 5  only. For smaller 
frequencies, too many higher harmonics have to be taken into account for a given 
precision of w. Therefore, the critical current a,@) = a ( w ,  / 3 ) l w = o  can never be 
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determined. The same holds for the critical limit cycle, which is identical to the 
separatrix in a 4, 4 phase plane for second-order differential equations. This separa- 
trix gives insight into the variety of transient and steady-state solutions of the pro- 
blem, since only one solution goes through a given point. This holds for higher-order 
differential equations (Hirsch and Smale 1974, Reissig et a1 1969) if higher-dimen- 
sional phase spaces are used and in a certain limit sense also for integral equations, 
which can be considered as being differential of infinite order. 

Bifurcation theory (Marsden and McCracken 1976) is the mathematical tool which 
handles problems concerned with the critical limit cycles. The fact that the solution 
bifurcates foi certain values of the parameters means physically, for example, a unique 
steady-state solution becomes double or even multiple. Which of the solutions will be 
obtained depends on the switching process necessary to change the parameters. The 
point a,(@) in the characteristic a (w,  P )  is such a bifurcation between the stationary 
solution and a rotational solution appearing for a >ac@). As a result, the charac- 
teristic has a hysteresis which describes the selection of solutions chosen by the 
system, if parameters are changed quasistatically. 

Questions of bifurcation are of great importance for the voltage resetting problem, 
i.e. the sudden fall-back of the rotational to the stationary solution i f  the current is 
decreased slowly below some value aR(P).  Qualitatively, it can be understood as a 
discontinuous voltage jump from the absolute current minimum, if it occurs for a finite 
voltage wR(P) .  If the absolute a minimum is in a,@) no deterministic resetting occurs 
(see noise resetting in Falco 1974). 

For a numerical evaluation of the critical limit cycles, the integral has to decay 
rather fast. If the kernel F ( t )  is a finite Dirichlet series, the integral equation (1.1) can 
be transferred into a higher-order differential equation (Schlup 1975), for which direct 
time integration by Runge-Kutta or similar methods is possible. 

Here we investigate some properties of the critical limit cycles for third- and 
fourth-order differential-type retarded Josephson equations. 

2. The exponential kernel 

The Dirichlet kernel considered is 

F ( t )  = N e-*' cos(Rt + a), (2.1) 

where normalisation gives N = (A + 0 2 ) / ( A  cos S - R sin 8). The corresponding 
tunnel functions are 

A cosS+(w-n)s in  
A 2 +  (6J - fl)* 

+ 
(2.2) 

-A s inS+(w-n)cos  + 
A + (0 - 

Elimination of the integral in (1.1) gives the differential equation of fourth order 

(2.3) 
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or for F = A e-A', i.e. R = S = 0,  

which is equivalent to the third-order equation 

since 

(2.6) 
1 
A 

equation ( 2 . 4 ) ~  equation (2.5)+- equation (2.5) 

and the homogeneous solution of (2.6), which may be added to (2.5) vanishes for 
t + +a; i.e. the transient solutions of (2.4) and (2.5) may be different but the steady- 
state solutions are the same. The form (2.5) also follows directly from (1.1) by 
differentiation. The tunnel functions for R =  S = 0 are 

(2.7) 

The adiabatic approximation to the retarded Josephson equation would be 

~ Q + 4 - i ( 4 ) c o s 4 + i ( 4 ) s i n 4  =a, (2.8) 

which for small 4 (linearised adiabatic approximation) becomes the classical Joseph- 
son equation 

p$ +4(1 + y  cos 4)+s in  4 = a  (2.9) 

with 

-y = t = dt t F ( t )  = [(A - 0') cos S - 2A R sin S]/[(A 2 +  R2)(A cos S - R sin S ) ] .  
-F Sbr 

For A +OO the kernel is a S ( t  -0) function giving the circuit model Josephson 
equation 

pQ +4 +sin 4 = a (2.10) 

exhibiting no 4-dependent dissipative term. For A + O ,  the dominant terms in (2.3) 
((2.5)) give 

p4(4)+ 4(3) = 0 p4(3)+ Q = 0, 

which, for a general rotational solution (4 =periodic function of wt  with period 2 ~ )  
means 4, 4(3), . . . = O  in a steady state. Therefore, 4 =const = U ,  and (Y = w  is the 
characteristic for A = 0. 

3. The characteristic 

The tunnel functions with R = 1 have been chosen to be very similar to the functions 
resulting from BCS theory. For A = 1, S = 0 the j ( w )  is positive everywhere with a 
maximum in w = 1(= f2) and decreasing for w + W. For small w, i ( w )  behaves like w 3 ,  
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and goes through a maximum to zero for w +CO in rough agreement with a zero- 
temperature case. The j ( w )  maximum becomes more pronounced and i ( w ) =  
-const U,  if .either S is made positive <7r/4, or if A is decreased but still 7 1 / 2  in 
qualitative agreement with the low-temperature case. 

The average voltage-current characteristic w ( a ,  p, A, a, 8 )  is determined for /3 = 2 
in figure 1 for both kernels (equations (2.3) and (2.5)) together with the linearised 
adiabatic approximation (LAA). All the curves have hyperbolic-like shapes and devi- 
ate appreciably from the LAA especially for large w .  For the oscillating kernel, there is 
no special structure at w = Q / n  like the subharmonic gaps for the Werthamer equa- 
tion, at least not for the parameters chosen. This may result from the singularity-free 
tunnel functions, as a consequence of an exponential kernel. The characteristic for 
A = 0 and A = 00 is also plotted. The adiabatic approximation resulting from a solution 
of equation (2.8) is the chain curve, which lies in between the LAA for y = 0 and -1, 
since i ( w ) / w  is, on the average, smaller than 1 for A = 1, and w being of order 1. It 
agrees better than the LAA for large w if compared with the characteristic of the 
retarded Josephson equation, since the LAA is a further simplification of (2.8),  and 
since the instantaneous voltage changes only a little for large w. 

- 

1 -  

W 

r 

U 

Figure 1. The characteristics w ( a )  for the kernel F ( t ) =  N(exp-At)cos(flt+S) marked 
with (6, A ,  fl, 8) or with [p. y ]  for the classical Josephson equation. The chain curve is the 
adiabatic approximation (equation (2.8)). 

4. The critical limit cycles 

The differential equation (2.3) is most effectively solved by integration in the phase 
plane variables z = C$ and x = 4 - T + sin-’ a for la1 S 1 or 4 otherwise. Using 4 = 
z(r$), 4 = 2’4 = z z ’ ,  4(3)= (rz’)’C$ = ~ ( z z ’ ) ’ ,  etc, (2.3) transforms into 

P 2A 
A 2 + f 1 2  

cos s 
A cos 6 - f2 sin S 

+ z ( l +  (4.1) 
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and (2.5) into 

z z ’+  z +sin q5 = a. 

The following boundary-value problem has to be solved: 

1875 

(4.2) 

z(27r)= z(O), (4.3) 

and subsequently, 

gives the characteristic. In order to find c$(t), a further integration is required: 

(4.5) 

if q5 (0) = 0 is assumed. 
It can be shown that the period 27r/w increases if a 3 a, because of a slow motion 

near to the unstable equilibrium point q5 = = 7r -sin-’ a being infinite for a = a,  
(see appendix). For a = a,, equations (4.1) and (4.2) are singular since d(q5 = &) = 
z(O)= 0. To start numerical integration, the derivatives z’(O), z”(0) and for (4.1) z”’(0) 
are required. They can be determined from (4.1) and (4.2), if a power expansion for 
z ( x )  is used and if  a ,  is known. 

Figure 2 shows the limit cycles in the 4, c$ plane for a e a ,  and equation (2.3) with 
= 2, A = SZ = 1,  S = 0. There exist two limiting tangents and the separatrix looks 

similar to that of the classical Josephson equation (2.9). 

I 12110) 

I 1 I I 
-0  1 0 01 

9 - K 
Figure 2. The limit cycles near the unstable equilibrium &, for ( 2  1 1 0) and a ~ a , =  
0.754 38 in a reduced phase space. 
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In contrast, figure 3 shows the same for equation ( 2 . 5 )  with p = 2 ,  A = 1 for a hac. 
It can be seen how a loop in the phase projection develops; it indicates that the motion 
inverts its direction just behind the unstable equilibrium. The outgoing branch follows 

= m(+ -&) for a large angular range, whereas the incoming branch behaves 
spiral-like giving rise to a focal point. This is shown in figure 4 which gives the phase 
space for equation (2.5). The curve drawn is an exponential spiral near to the origin, 
but since it decays very fast only half of a winding can be seen in this plot. 

1 121001 
c \  \ 

Figure 3. The limit cycles near the unstable equilibrium &, for (2 1 0 0) and a 2 a, = 
0.558 12 in a reduced phase space. 

Figure 4. The critical limit cycle for (2 1 0 0 )  near to I$ = &. The phase space I$, ,$, 
given by two projections. The incoming branch is spiral-like. 

is 
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5. Final remarks 

As a result of numerical problems, the critical limit cycle of the retarded Josephson 
equation can only be found by fast-decaying kernels or by kernels consisting of a finite 
Dirichlet sum. As the simplest Dirichlet kernel, the exponential function with or 
without a trigonometric one is investigated. Contrary to a weakly-decaying oscillating 
kernel, the characteristic shows no drastic structure if the solution is in resonance with 
the trigonometric function, because of its smooth Fourier transforms. The critical limit 
cycle (separatrix) then behaves as in the classical Josephson equation, generating a 
saddle point or a focus. 

If the kernel is a simple exponential, the critical limit cycle behaves linearly and 
with finite tangent only in its outgoing branch. The incoming branch is spiral-like 
close to the unstable equilibrium point giving rise to a focus. 

The characteristics are different for the retarded equation, the adiabatic approxi- 
mation and their linear version, since for P = 2 the voltage changes rather fast. Even in 
the limit w + 0, the critical currents are different, since the voltage still changes in a 
range of order 1. A coincidence of the three results can only be expected for p >> 1, if 
the tunnel functions have a Taylor series for small w .  This can be proved by asymp- 
totic expansions with respect to 1/P. 

Appendix. Motion near to the unstable equilibrium & 

Assuming x = 4 - & and I = mx +O(x2)  for the separatrix near to the unstable 
equilibrium in the phase plane z ,  x (reduced phase space) 

( l / x )  equation (4.1) for a = a,(<1) j 

cos s 
A cos S -0 sin S 

(1-az)1/2)m-(1-ac)  2 1 / 2 =  0.  + ( l -  

Analogously 

(4.2) j ~ , ( m )  = - m 3  + P +- m 2  + m - (1 -a: )*I2 = 0, 
A ( 3 

which is a special case of (A. 1) for a= S = 0: 

(A . l l )  

For p = 2, A = 1, fl= 1, S = 0 with ac= 0.754 38 (A.1)+ m l  = 0.362 86, m2 = 
-0.728 18 and conjugate complex m3.4= -1.067 34*i 1,159 81. 

For /3 = 2 ,  A = 1, a= 0 ,  S = 0 with a, = 0.558 12 ( A . 2 ) j  my = 0.356 85 and con- 
jugate complex m:,3 = -0.928 43 * i 0.548 31, whereas Pz ( m )  has the additional root 
m = -1, which is a consequence of (2.6) and has to be discarded in a steady state. 

The time-dependent behaviour near to the unstable equilibrium can be discussed 
by transforming one higher-order equation (2.3) or (2.5) into a system of first-order 
equations, which can be linearised for small deviations d1 = 4 - &, Introducing 
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dZ = 6, C#J~ = 4 and eventually r$4 = 4 ~ ' ~ )  and using a column vector 4 with components 
di the differential equation becomes 

4 = A &  (A.4) 

where A is a matrix with eigenvalues being the roots mi of (A.l)  for (2.3) or being the 
roots m: of (A.2) for (2.5). Since the roots are all different from one another, there 
exists a regular matrix S diagonalising A 

M = S-'AS -- î  m2 . .  1 .  ( ' 4 . 5 )  

' I  

Therefore the solution near to = 0 is 

4 = sc eMr, ('4.6) 
where C is a vector of integration contants. 

For (2.3) the outgoing branch starting with r = --CO in the unstable equilibrium is 
given by 41 = CI exp(mlt), cz = c3 = c4 = 0. whereas the incoming branch ending with 
t =-CO in is given by c1  = O  and ~ $ ~ = c ~ e x p ( m 2 t ) ,  since m2 with Im21</Rem3,41 
dominates for large times in agreement with the numerical results. 

For ( 2 . 5 )  the outgoing branch is analogously given by 4' = c1 (exp myt)  c2 = c3  = 0 
starting in with t = -a. The incoming branch ending in t =CO however is deter- 
mined by CI = 0,41= c2 exp[(Re m;)t] cos [(Im m;)t+c3], 42 = d1 and 43 = which 
is a spiral with half period T112 = r / I m  m: during which &, d2, d3 change sign and 
decrease by -4i(t+ T1/2)/4i(t)=exp[(Re m;)Tl ,2 ] .  For the example of (A.2) consi- 
dered, this factor is 1 : 200 for a half period or 1 : 40000 for a full spiral period. It is 
easy to verify that the spiral lies in the plane 

lm;/241-2(Re m i ) 4 2 + 4 3 = 0 .  
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